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Introduction

Aim of this talk is to present a new viewpoint, related to the

so-called entropic interpolation (a problem which goes back to

Schrödinger in the 1930’s) on second-order MFGs with a

quadratic Hamiltonian and a variational structure.
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More precisely, as we know from the seminal works of Lasry and

Lions, the second-order MFG system






−∂tϕ−∆ϕ+ 1
2 |∇ϕ|2 = δF

δρ
(ρ), ϕ|t=1

= δG
δρ

(ρ1)

∂tρ−∆ρ− div(ρ∇ϕ) = 0, ρ|t=0
= ρ0.

(t ∈ (0, 1) and x ∈ T
d, could be R

d as well taking some care of

what’s happening at infinity..) is, in some sense, the system of

optimality conditions for the optimal control problem:

inf
(ρ,v)

∫ 1

0

∫

Td

1

2
ρ|v|2dxdt+

∫ 1

0

F (ρt)dt+G(ρ1)

subject to

∂tρ−∆ρ+ div(ρv) = 0, ρ|t=0
= ρ0.
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This is a convex problem when F and G are local and convex.

We shall assume that either F and G are convex and local (plus

growth conditions) or that they are regular, this ensures

existence of minimizers.

We shall see that this problem is a (Lagrangian) entropy

minimization problem (whose discretization in time can be

solved numerically efficiently).
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Outline

➀ Schrödinger’s problem

➁ The structure of entropic interpolation

➂ MFGs by Entropy minimization

➃ Numerical results
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Schrödinger’s problem

Let T
d := R

d/2πZd, Ω := C([0, 1],Td) and R be the reversible

Wiener measure i.e. R ∈ P(Ω) is given by

R =
1

(2π)d

∫

Td

Law(x+ B)dx (1)

where B is the standard Brownian motion starting at 0 (that is

the Markov process whose generator is ∆ on T
d).

Schrödinger’s problem/1



Schrödinger’s problem 7

Given ρ0 and ρ1 probability measures on T
d (with finite

entropy), the Schrödinger Bridge problem between ρ0 and ρ1

reads

S(ρ0, ρ1) := inf
{

H(Q|R) : e0#Q = ρ0, e1#Q = ρ1

}

where

H(Q|R) :=

∫

Ω

ln
(dQ

dR

)

dQ

and et is the evaluation at time t map, et(ω) = ω(t).

Schrödinger’s problem/2
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Seems a complicated problem but can be brought down to a

static problem (C. Léonard). Denote by Π(ρ0, ρ1) the set of

transport plans between ρ0 and ρ1 i.e. the set of joint

probability measures having ρ0 and ρ1 as marginals.

Now disintegrate Q and R with respect to

Q0,1 := (e0, e1)#Q ∈ Π(ρ0, ρ1) and R0,1 := (e0, e1)#R

respectively:

Q =

∫

Qx,yQ0,1(dx, dy), R =

∫

Rx,yR0,1(dx, dy)

Note that R0,1 can be identified with its density G0,1(x− y)

which is nothing but the heat kernel and Rx,y is the Brownian

Bridge between x and y.

Schrödinger’s problem/3
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Since

H(Q|R) = H(Q0,1|R0,1) +

∫

H(Qx,y|Rx,y)Q0,1(dx, dy)

hence the entropy minimizing strategy consists in taking

Qx,y = Rx,y and Q0,1 solution of the static problem:

S(ρ0, ρ1) := inf
{

H(Q0,1|R0,1), Q0,1 ∈ Π(ρ0, ρ1)}.

Schrödinger’s problem/4
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The optimality condition for this static problem (strictly convex

minimization) reads

Q0,1(x, y) = G0,1(x− y)f0(x)g1(y)

and the fixed marginal conditions impose

(G0,1 ⋆ g1)f0 = ρ0, (G0,1 ⋆ f0)g1 = ρ0 (2)

this is the so-called Schrödinger system. Here the log of f0 and

g1 are Lagrange multipliers associated to the marginal

constraints, f0 and g1 are called Schrödinger potentials.

Existence of such potentials is not obvious at all but has been

very much studied since the 1940’s (Bernstein, Fortet, Beurling,

Föllmer, Nussbaum, Borwein, Lewis, Léonard...). These

potentials are unique up to (f0, g1) 7→ (λf0, g1/λ).

Schrödinger’s problem/5
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The structure of entropic interpolation

Assume that we have a pair of Schrödinger potentials, f0, g1, set

then f1 := G0,1 ⋆ f0, g0 := G0,1 ⋆ g1 so that ρ0 = f0g0,

ρ1 = f1g1. Interpolation: ρt := ftgt where ft and gt respectively

solve a forward and backward heat equation

∂tf = ∆f, f |t=0 = f0, ∂tg = −∆g, g|t=1 = g1. (3)

The structure of entropic interpolation/1



The structure of entropic interpolation 12

This (Eulerian) entropic interpolation ρ solves Fokker-Planck

with the drift ∇ϕ where ϕ = − log g (this is Hopf-Cole...):

∂tρ−∆ρ− div(ρ∇ϕ) = 0, (4)

whereas ϕ soves the backward Hamilton-Jacobi-Bellman

equation

−∂tϕ−
1

2
∆ϕ+

1

2
|∇ϕ|2 = 0 (5)

The structure of entropic interpolation/2
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At least formally, (ρ,−∇ϕ) solves

FP(ρ0, ρ1) := inf
{1

2

∫ 1

0

∫

Rd

|vt(x)|
2µt(x)dxdt

}

,

subject to

∂tµ−∆µ+ div(µv) = 0, µt=0,1 = ρ0, ρ1

And one has

S(ρ0, ρ1) = FP(ρ0, ρ1) +

∫

Td

ρ0 ln(ρ0).

where we recall that

S(ρ0, ρ1) := inf
{

H(Q|R) : e0#Q = ρ0, e1#Q = ρ1

}

The structure of entropic interpolation/3
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The solution of S(ρ0, ρ1) is Markovian it is the law of the

diffusion process X :

dXt = −∇ϕt(Xt)dt+ dWt, X0 ∼ µ0.

Conversely if Q solves the dynamic Schrödinger problem,

ρt := et#Q is an optimal trajectory for FP(ρ0, ρ1).

The structure of entropic interpolation/4
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The manipulations above are slightly formal but can be made

rigorous (juste under a finite entropy condition):

• By Girsanov theory (Léonard),

• By stochastic control arguments (Mikami).

Nice references (connections with Nelson’s stochastic mechanics,

with optimal transport, large deviations, functional

inequalities....): Beurling 1960, Föllmer, 1988, Léonard 2012,

2014, Gentil, Léonard, Ripani 2016, Mikami 1991, Zambrini

1986, Jamison 1975. Incompressible fluids: Yasue 1982,

Arnaudon, Cruzeiro, Léonard, Zambrini, 2017,

Benamou-C.-Nenna 2017....

The structure of entropic interpolation/5
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MFGs by Entropy minimization

In the entropic interpolation, as in the optimal transport

problem, we prescribe the two end-points measures e0#Q = ρ0

and e1#Q = ρ1 . Instead, we can penalize/put constraints on

the marginals ((et)#Q)t∈[0,1]. Important example:

incompressibility i.e. et#Q = (2π)−dLd, such Q’s are called

generalized incompressible flows, following the seminal

contributions of Yann Brenier. See the recent work of

Arnaudon, Cruzeiro, Léonard, Arnaudon, Benamou-C.-Nenna.

MFGs by Entropy minimization/1
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Consider the (Eulerian) variational formulation of the MFG

system we started with:

MFG := inf
ρ,v

∫ 1

0

∫

Td

1

2
ρ|v|2dxdt+

∫ 1

0

F (ρt)dt+G(ρ1)

subject to

∂tρ−∆ρ+ div(ρv) = 0, ρ|t=0
= ρ0.

Consider now its (Lagrangian) Schrödinger version

SMFG := inf
Q : e0#Q=ρ0

H(Q|R) +

∫ 1

0

F (et#Q)dt+G(e1#Q)

MFGs by Entropy minimization/2
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Equivalence with Mean-Field Games

Theorem 1 Under the assumptions that F and G are either

convex or regular and
∫

Td ρ0 ln(ρ0) < +∞ we have

SMFG = MFG+

∫

Td

ρ0 ln(ρ0)

and when Q solves SMFG, ρt := et#Q solves MFG.

MFGs by Entropy minimization/3
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Ideas of the proof (which does not use fine Girsanov-like

arguments). First discretize both problems in time, h = 1/N a

time step discretization, given (µ0, · · · , µN ) ∈ P(Td)N+1 set

JN (µ0, · · · , µN ) :=
1

N

N
∑

i=1

F (µi) +G(µN )

Define

FPh(µ, ν) := inf
ρ,v:∂tρ−∆ρ+div(ρv)=0

∫ h

0

∫

Td

1

2
ρ|v|2 : ρ|t=0,h

= µ, ν}

And consider the time-discretization of MFG

MFGh := inf
µ0=ρ0,µ1,···µN

N−1
∑

i=0

FPh(µi+1, µi) + JN (µ0, · · · , µN )

MFGs by Entropy minimization/4
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As well as the time-discretization of MFG:

SMFGh := inf
µ0=ρ0,µ1,···µN

SN (µ0, · · · , µN ) + JN (µ0, · · · , µN )

where SN is given by the multi-marginal Schrödinger problem

SN (µ0, · · · , µN ) := inf{H(Q|R) e k
N #

Q = µk, k = 0, · · · , N}.

We first show that

SN (µ0, · · · , µN ) =

N−1
∑

i=0

FPh(µi+1, µi) +

∫

Td

µ0 ln(µ0).

and then prove a Γ-convergence results for both approximations

MFGh and SMFGh.

MFGs by Entropy minimization/5
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Idea of the proof for the identity (noisy Benamou-Brenier

formula)

SN (µ0, · · · , µN ) =

N−1
∑

i=0

FPh(µi+1, µi) +

∫

Td

µ0 ln(µ0).

is by induction on N , N = 1 is classical (Chen, Pavon,

Georgiou, Gentil, Léonard, Ripani, Gigli, Tamanini). The

induction step is by using the Markovianity of the reference

measure R which forces entropy minimizers with marginal

constraints to be Markov themselves giving some additivity of

the minimal entropy.

MFGs by Entropy minimization/6
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Γ-convergence is more involved, main ingredients are a priori

estimates (in particular on the Fisher information) on

finite-energy curves of measures, suitable smoothing

approximations and Prokhorov’s like arguments on the path

space.

MFGs by Entropy minimization/7
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By these arguments, in fact we have a general formula for every

fixed suitable (finite energy) curve of measures t 7→ µt:

inf{H(Q|R) : et#Q = µt} =

∫

Td

µ0 ln(µ0) + inf
v

1

2

∫ T

0

∫

Td

|v|2µ

where on the right-hand side the drift v is constrained by

∂tµ−∆µ+ div(µv) = 0.

Note that there are infinitely many marginal constraints in the

entropy minimization problem.

MFGs by Entropy minimization/8
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Numerical results

Entropy minimization (as a regularization of OT) is particularly

appealing from a numerical viewpoint. Start with a discrete OT

problem, LP

min
γ∈Π(µ,ν)

∑

i,j

cijγij

where γ ∈ Π(µ, ν) reads

γij ≥ 0,
∑

j

γij = µi,
∑

i

γij = νj

Entropic regularization, ε > 0,

inf
γ∈Π(µ,ν)

∑

i,j

cijγij + ε
∑

i,j

γij log(γij). (6)
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The approximation (6) is the same as the Kullback-Leibler

projection of the Gibbs kernel on the set of transport plans

inf KL(γ|θ) where θij := e−
cij

ε .

where

KL(γ|θ) :=
∑

ij

γij log
(γij
θij

)

Numerical results/2
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The projection of θ is characterized by

γij = aibjθij

with ai, bj positive and such that the marginal constraints are

met i.e.

ai =
µi

∑

j bjθij
:= Ri(b), bj =

νj
∑

i aiθij
:= Sj(a)

which can be rewritten as a fixed point-problem on a only: find

a in the positive cone such that a = Ta (with T = R ◦ S).

dH(a, a′) := log
(maxi

ai

a′

i

mini
ai

a′

i

)

, (a, a′) ∈ (0,+∞)N .

for which T is a contraction.

Sinkhorn scaling agorithm: iterate the map T . Linear

convergence.
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Note that computations are completely parallelizable, only

I + J coefficients to store at each step. Old idea, huge literature:

• optimization (Bregman, Bauschke, Combettes, Lewis,

Cominetti, San-Martin...),

• probability and statistics (Csisczar, Dykstra, Léonard,

Föllmer, Rüschendorf...),

• tropical algebra, Perron-Frobenius theory (Gaubert,

Nussbaum, Borwein, Chen, Pavon, Georgiou...).
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Sinkhorn algorithm was remis au goût du jour in an OT

framework only recently (Marco Cuturi, Alfred Galichon). Can

easily be adapted to more general problems: multi-marginals,

barycenters, partial transport .... See Benamou, C., Cuturi,

Nenna, Peyré. Highly paralelizable. Special case of the

quadratic cost, convolution with the heat kernel.
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Generalized incompressible flows. Simple periodic 1d case.

Fixed final (Lagrangian) configuration of the fluid, somehow

extreme case where F enforces ρ to be uniform at each time.
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 1: Periodic Case : for different times tk. Horizontal axis

is x0 and vertical axis xk.
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t = 0 t = 1/8 t = 1/4 t = 3/8 t = 1/2

t = 5/8 t = 3/4 t = 7/8 t = 1

Figure 2: Periodic Case (XT discontinuous) : for different times

tk. Horizontal axis is x0 and vertical axis xk.
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