> A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology.

> > Verónica Anaya

(GIMNAP, DMAT, Universidad del Bío-Bío, Concepción, Chile MOSTAFA BENDAHMANE

> IMB, Université de Bordeaux, Talence, France DAVID MORA

GIMNAP, DMAT, Universidad del Bío-Bío, Concepción, Chile $MAURICIO \ SEPÚLVEDA$

Cl²MA, y DIM, Universidad de Concepción, Concepción, Chile

- Model problem and weak solution
- 2 Virtual element scheme and main result
- 3 Properties of solution for the virtual element scheme
- 4 Compactness argument and convergence
- 5 Error estimates analysis
- 6 Numerical results

Model problem

4

T > 0, $\Omega \subset \mathbb{R}^2$ with polygonal boundary Σ . $\Omega_T := \Omega \times (0, T)$; $\Sigma_T := \Sigma \times (0, T)$; v = v(x, t) and w = w(x, t) stand for the transmembrane potential and the gating variable, respectively. The nonlocal reaction-diffusion FitzHugh-Nagumo system is:

$$\begin{cases} \partial_t v - \mathcal{D}\left(\int_{\Omega} v(x,t) \, dx\right) \Delta v + I_{\text{ion}}(v,w) = I_{\text{app}}(x,t) & (x,t) \in \Omega_T, \\ \partial_t w - H(v,w) = 0 & (x,t) \in \Omega_T, \\ \mathcal{D}\left(\int_{\Omega} v(x,t) \, dx\right) \nabla v \cdot \mathbf{n} = 0 & (x,t) \in \Sigma_T, \\ v(x,0) = v_0(x), & w(x,0) = w_0(x) & x \in \Omega. \end{cases}$$

 $I_{\mathrm{app}}(x,t)\in L^2(\Omega_{\mathcal{T}})$ is the stimulus.

diffusion rate \mathcal{D} and ionic current I_{ion} hipotheses

 $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is a continuous function satisfying

$$d_1 \leq \mathcal{D} \quad ext{and} \quad |\mathcal{D}(\mathit{l}_1) - \mathcal{D}(\mathit{l}_2)| \leq d_2 \, |\mathit{l}_1 - \mathit{l}_2| \quad ext{for all} \quad \mathit{l}_1, \mathit{l}_2 \in \mathcal{R}.$$

$$\begin{split} &l_{\rm ion}(v,w) = l_{1,\rm ion}(v) + l_{2,\rm ion}(w). \\ &l_{1,\rm ion}, l_{2,\rm ion}: \mathcal{R} \to \mathcal{R} \text{ and } H: \mathcal{R}^2 \to \mathcal{R} \text{ are continuous functions,} \\ \exists \ \alpha_1, \alpha_2, \alpha_3, \alpha_4 > 0 \text{ such that} \end{split}$$

a)
$$\frac{1}{\alpha_1} |v|^4 \leq |I_{1,\mathrm{ion}}(v)v| \leq \alpha_2 \left(|v|^4 + 1 \right),$$

b)
$$|I_{2,ion}(w)| \le \alpha_3(|w|+1),$$

c)
$$\forall z,s \in \mathcal{R} \quad (I_{1,\mathrm{ion}}(z)-I_{1,\mathrm{ion}}(s))(z-s) \geq -C_h |z-s|^2,$$

d) $|H(v,w)| \le \alpha_4(|v|+|w|+1).$

Model problem and weak solution

Virtual element scheme and main result Properties of solution for the virtual element scheme Compactness argument and convergence Error estimates analysis Numerical results References

Weak solution

Definition (Weak solution)

A weak solution of the system is a couple (v, w) such that $v \in L^2(0, T; H^1(\Omega)) \cap L^4(\Omega_T), \ \partial_t v \in L^2(0, T; H^1(\Omega)') + L^{\frac{4}{3}}(\Omega_T),$ $w \in C([0, T]; L^2(\Omega)),$ satisfying $\iint_{\Omega_T} \partial_t v \varphi + \int_0^T \mathcal{D}(\int_{\Omega} v(x, t) dx) \int_{\Omega} \nabla v \cdot \nabla \varphi + \iint_{\Omega_T} l_{ion}(v, w)\varphi =$ $\iint_{\Omega_T} I_{app}(x, t)\varphi,$ $\iint_{\Omega_T} \partial_t w \phi - \iint_{\Omega_T} H(v, w)\phi = 0,$ for all $\varphi \in L^2(0, T; H^1(\Omega)) \cap L^4(\Omega_T)$ and $\phi \in C([0, T]; L^2(\Omega)).$

Remark

Note that, the above Definition implies $v \in C([0, T]; L^2(\Omega))$.

The virtual elements

Let $\{\mathcal{T}_h\}_h$ be a sequence of decompositions of Ω into polygons K. h_K is the diameter of the element K and $h := \max_{K \in \mathcal{T}_h} h_K$.

 $\exists C_{\mathcal{T}} \text{ such that, } \forall h \text{ and } \forall K \in \mathcal{T}_h$,

- A1: the ratio between the shortest edge and the diameter h_K of K is larger than C_T ;
- A2: $K \in \mathcal{T}_h$ is star-shaped with respect to every point of a ball of radius $C_{\mathcal{T}}h_K$.

 $\forall S \subseteq \mathcal{R}^2$, $k \in \mathbb{N}$, we indicate by $\mathbb{P}_k(S)$ the space of polynomials of degree up to k defined on S.

 $orall K \in \mathcal{T}_h$, the local space $V_{k|K}$ is defined by

$$V_{k|K} := \{ \varphi \in H^1(K) \cap C^0(K) : \varphi_{|e} \in \mathbb{P}_k(e) \; \forall e \in \partial K, \; \Delta \varphi \in \mathbb{P}_k(K) \}.$$

Linear operators and bilinear form

B.Ahmad, A.Alsaedi, F.Brezzi, L.D.Marini, A.Russo, Comput. Math. Appl. (2013)

Now, we introduce the following set of linear operators from $V_{k|K}$ into \mathcal{R} . For all $\varphi \in V_{k|K}$:

- D_1 : The values of φ at the vertices of K;
- D_2 : Values of φ at k-1 distinct points in e, for all $e \in \partial K$;
- D_3 : All moments $\int_K \varphi p \, dx$, for all $p \in \mathbb{P}_{k-2}(K)$. Now, we split the bilinear form $a(\cdot, \cdot) := (\nabla \cdot, \nabla \cdot)_{0,\Omega}$,

$$\mathsf{a}(\mathsf{v}, arphi) := \sum_{K \in \mathcal{T}_h} \mathsf{a}^K(\mathsf{v}, arphi), \qquad orall \mathsf{v}, arphi \in \mathsf{H}^1(\Omega),$$

where

$$a^{K}(\mathbf{v}, \varphi) := \int_{K} \nabla \mathbf{v} \cdot \nabla \varphi, \qquad \forall \mathbf{v}, \varphi \in H^{1}(\Omega).$$

ENSE - ESSAOUIRA, July 8-10, 2019

Work. Inter. Modél. et Calcul num. pour la Biomath.

The projection operator

Let $\Pi_{K,k} : V_{k|K} \to \mathbb{P}_k(K)$ be the projection operator defined by $\begin{cases}
a^K(\Pi_{K,k}v, q) = a^K(v, q) & \forall q \in \mathbb{P}_k(K), \\
P_0(\Pi_{K,k}v) = P_0v,
\end{cases}$

where P_0 can be taken as

$$\begin{cases} P_0 v := \frac{1}{N_K} \sum_{i=1}^{N_K} v(V_i) & k = 1, \\ P_0 v := \frac{1}{|K|} \int_K v \, dx & k > 1, \end{cases}$$

 V_i the vertices of K, $1 \le i \le N_K$ (N_K number of vertices).

For any $\varphi \in V_{k|K}$, the values of the linear operators D_1, D_2 and D_3 are sufficient to compute $\Pi_{K,k}$.

As a consequence, the projection operator $\Pi_{K,k}$ depends only on the values of the operators D_1, D_2 and D_3 .

The virtual local space

B.Ahmad, A.Alsaedi, F.Brezzi, L.D.Marini, A.Russo, Comput. Math. Appl. (2013)

Now, we introduce our virtual local space

$$W_{k|K} := \left\{ \varphi \in V_{k|K} : \int_{K} (\Pi_{K,k} \varphi) q \, dx = \int_{K} \varphi q \, dx \quad \forall q \in \mathbb{P}_{k} / \mathbb{P}_{k-2}(K) \right\}$$

 $\mathbb{P}_k/\mathbb{P}_{k-2}(K)$ polynomials of degree k, L^2 -orthogonal to polynom. of degree k-2 on K.

Since $W_{k|K} \subset V_{k|K}$, the operator $\Pi_{K,k}$ is well defined on $W_{k|K}$ and computable on the basis of the values of the operators D_1, D_2, D_3 . The operators D_1, D_2 and D_3 constitute a set of degrees of freedom for the space $W_{k|K}$.

Global degrees of freedom

The global discrete space will be

$$W_h := \{ \varphi \in H^1(\Omega) : \varphi|_K \in W_{k|K}, \quad \forall K \in \mathcal{T}_h \}.$$

In agreement with the local choice of the degrees of freedom, in W_h we choose the following degrees of freedom:

- DG_1 : The values of φ at the vertices of \mathcal{T}_h ;
- DG_2 : Values of φ at k-1 distinct points in e, for all $e \in \mathcal{T}_h$;
- DG_3 : All moments $\int_{K} \varphi p \, dx$, for all $p \in \mathbb{P}_{k-2}(K)$ on each element $K \in \mathcal{T}_h$.

Ancillary symmetric positive definite bilinear forms

On the other hand, let $S^{\kappa}(\cdot, \cdot)$ and $S_0^{\kappa}(\cdot, \cdot)$ be any symmetric positive definite bilinear forms to be chosen as to satisfy

$$\begin{split} c_0 a^{K}(\varphi_h,\varphi_h) &\leq S^{K}(\varphi_h,\varphi_h) \leq c_1 a^{K}(\varphi_h,\varphi_h) \forall \varphi_h \in V_{k|K} \\ & \text{with} \quad \Pi_{K,k} \varphi_h = 0, \\ \tilde{c}_0(\varphi_h,\varphi_h)_{0,K} &\leq S_0^{K}(\varphi_h,\varphi_h) \leq \tilde{c}_1(\varphi_h,\varphi_h)_{0,K} \forall \varphi_h \in V_{k|K}, \end{split}$$

for some positive constants c_0, c_1, \tilde{c}_0 and \tilde{c}_1 independent of K.

Discrete bilinear and trilinear forms

We define the local discrete bilinear and trilinear forms:

$$a_h^K(\cdot, \cdot): W_h imes W_h o \mathcal{R}, \qquad m_h^K(\cdot, \cdot): W_h imes W_h o \mathcal{R},$$

 $b_h^K(\cdot, \cdot, \cdot): W_h imes W_h imes W_h o \mathcal{R}, \quad c_h^K(\cdot, \cdot, \cdot): W_h imes W_h imes W_h o \mathcal{R},$

Discrete bilinear and trilinear forms

As follow, for all $v_h, w_h, \varphi_h \in W_{k|K}$:

$$\begin{aligned} a_h^K(v_h,\varphi_h) &:= a^K(\Pi_{K,k}v_h,\Pi_{K,k}\varphi_h) + S^K(v_h - \Pi_{K,k}v_h,\varphi_h - \Pi_{K,k}\varphi_h), \\ m_h^K(v_h,\varphi_h) &:= (\Pi_{K,k}^0v_h,\Pi_{K,k}^0\varphi_h) + S_0^K(v_h - \Pi_{K,k}^0v_h,\varphi_h - \Pi_{K,k}^0\varphi_h), \\ b_h^K(v_h,w_h,\varphi_h) &:= \int_K I_{ion}(\Pi_{K,k}^0v_h,\Pi_{K,k}^0w_h)\Pi_{K,k}^0\varphi_h, \\ c_h^K(v_h,w_h,\varphi_h) &:= \int_K H(\Pi_{K,k}^0v_h,\Pi_{K,k}^0w_h)\Pi_{K,k}^0\varphi_h, \end{aligned}$$

where $\Pi_{K,k}^0: W_{k|K} \to \mathbb{P}_k(K)$ is the standard L^2 -projection operator. We note that all the forms introduced above are computable on the basis of the degrees of freedom.

Consistency and stability

We observe that for all $K \in \mathcal{T}_h$ it holds:

• *k*-consistency: for all $p \in \mathbb{P}_k(K)$ and for all $\varphi_h \in W_{k|K}$

$$\begin{aligned} \mathbf{a}_{h}^{K}(p,\varphi_{h}) &= \mathbf{a}^{K}(p,\varphi_{h}), \\ m_{h}^{K}(p,\varphi_{h}) &= (p,\varphi_{h})_{0,K}. \end{aligned}$$

• stability: there exist four positive constants $\alpha', \alpha'', \beta', \beta''$, independent of h, such that for all $\varphi_h \in W_{k|K}$

$$\alpha' a^{K}(\varphi_{h},\varphi_{h}) \leq a^{K}_{h}(\varphi_{h},\varphi_{h}) \leq \alpha'' a^{K}(\varphi_{h},\varphi_{h}),$$

$$\beta' (\varphi_{h},\varphi_{h})_{0,K} \leq m^{K}_{h}(\varphi_{h},\varphi_{h}) \leq \beta'' (\varphi_{h},\varphi_{h})_{0,K}.$$

Then, we set for all $v_h, w_h, \varphi_h \in W_h$,

$$a_h(v_h,\varphi_h) := \sum_{K\in\mathcal{T}_h} a_h^K(v_h,\varphi_h), \quad m_h(v_h,\varphi_h) := \sum_{K\in\mathcal{T}_h} m_h^K(v_h,\varphi_h),$$

Nonlocal diffusion and nonlinear right-hand side

We discretize the nonlocal diffusion term using the L^2 -projection

$$J(\mathbf{v}_h) := \int_{\Omega} \mathbf{v}_h = \sum_{K \in \mathcal{T}_h} \int_K \Pi^0_{K,k} \mathbf{v}_h, \qquad \mathbf{v}_h \in W_h.$$

For the right-hand side, since $I_{\mathrm{app}}(x,t) \in L^2(\Omega_T)$, we set

$$I_{app,h}(t) = \Pi_k^0 I_{app}(\cdot, t) \quad \text{for a.e.} \quad t \in (0, T),$$

where Π_k^0 is defined by

$$(\Pi^0_k g)|_{\mathcal{K}} := \Pi^0_{\mathcal{K},k} g \quad ext{ for all } \mathcal{K} \in \mathcal{T}_h$$

with $\Pi^0_{K,k}$ the $L^2(K)$ -projection.

Continuity

Now, we note that the symmetry of $a_h(\cdot, \cdot)$ and $m_h(\cdot, \cdot)$, and the stability conditions stated before imply the continuity of a_h and m_h . In fact, for all $v_h, \varphi_h \in W_h$:

$$\begin{aligned} |a_h(v_h,\varphi_h)| &\leq C \|v_h\|_{H^1(\Omega)} \|\varphi_h\|_{H^1(\Omega)},\\ |m_h(v_h,\varphi_h)| &\leq C \|v_h\|_{L^2(\Omega)} \|\varphi_h\|_{L^2(\Omega)}. \end{aligned}$$

The semidiscrete scheme

The semidiscrete VEM formulation reads as follows. For all t > 0, find $v_h, w_h \in L^2(0, T; W_h)$ with $\partial_t v_h, \partial_t w_h \in L^2(0, T; W_h)$, such that

$$\begin{cases} m_h(\partial_t v_h(t), \varphi_h) &+ \mathcal{D}(J(v_h(t))) a_h(v_h(t), \varphi_h) \\ &+ b_h(v_h(t), w_h(t), \varphi_h) = (I_{app,h}(t), \varphi_h)_{0,\Omega} \\ m_h(\partial_t w_h(t), \phi_h) &- c_h(v_h(t), w_h(t), \phi_h) = 0, \end{cases}$$

for all $\varphi_h, \phi_h \in W_h$. Additionally, we set $v_h(0) = v_h^0$ and $w_h(0) = w_h^0$. A classical backward Euler integration method is employed for the time discretization with time step $\Delta t = T/N$.

The fully discrete scheme

We set $v_h(0) = v_h^0$ and $w_h(0) = w_h^0$. Find $v_h^n, w_h^n \in W_h$ such that

$$\begin{cases} m_h \left(\frac{v_h^n - v_h^{n-1}}{\Delta t}, \varphi_h \right) + \mathcal{D} \left(J(v_h^n) \right) a_h \left(v_h^n, \varphi_h \right) + b_h(v_h^n, w_h^n, \varphi_h) \\ &= \left(I_{app,h}^n, \varphi_h \right)_{0,\Omega} \\ m_h \left(\frac{w_h^n - w_h^{n-1}}{\Delta t}, \phi_h \right) - c_h(v_h^n, w_h^n, \phi_h) = 0, \end{cases}$$

for all $\varphi_h, \phi_h \in W_h$, for all $n \in \{1, \dots, N\}$; $I_{app,h}^n := I_{app,h}(t_n)$ with $t_n := n\Delta t$, for $n = 0, \dots, N$. We denote

$$v_h := \sum_{n=1}^N v_h^n(x) \mathbb{1}_{((n-1)\Delta t, n\Delta t]}(t), \quad w_h := \sum_{n=1}^N w_h^n(x) \mathbb{1}_{((n-1)\Delta t, n\Delta t]}(t).$$

Existence of solution for the virtual element scheme

Proposition

Under the previous assumptions, the full numerical scheme admits a discrete solution $\mathbf{u}_h^n = (v_h^n, w_h^n)$.

Proof: The existence of \mathbf{u}_h^n is shown by induction on n = 0, ..., N. For n = 0, solution is given by $\mathbf{u}_h^0 = (v_h(0), w_h(0)) = (v_h^0, w_h^0)$. Assume that \mathbf{u}_h^{n-1} exists. Choose $[\![\cdot, \cdot]\!]$ as the scalar product on $H^1(\Omega) \times L^2(\Omega)$.

Proof of existence of solution for the virtual element scheme

We define a map $L: W_h \times W_h \to W_h \times W_h$ such that for every $\mathbf{u}_h^n \in W_h \times W_h$, $L(\mathbf{u}_h^n) \in W_h \times W_h$ is the solution of following problem:

$$\begin{bmatrix} L(\mathbf{u}_h^n), \Phi_h \end{bmatrix} = m_h \left(\frac{v_h^n - v_h^{n-1}}{\Delta t}, \varphi_h \right) + \mathcal{D} \left(J(v_h^n) \right) a_h(v_h^n, \varphi_h) + b_h(v_h^n, w_h^n, \varphi_n) - \left(I_{app,h}(t_n), \varphi_h \right)_{0,\Omega} + m_h \left(\frac{w_h^n - w_h^{n-1}}{\Delta t}, \phi_h \right) - c_h(v_h^n, w_h^n, \phi_h),$$

for all $\Phi_h := (\varphi_h, \phi_h) \in W_h \times W_h$.

Proof of existence of solution for the virtual element scheme

Next, we are looking for a solution \mathbf{u}_h^n to $\llbracket L(\mathbf{u}_h^n), \Phi_h \rrbracket = 0$. Note that the continuity of the operator L is a consequence of the continuity of m_h , a_h b_h and c_h . Moreover, the following bound holds from the discrete Hölder and Sobolev inequalities (recall that $H^1(\Omega) \subset L^q(\Omega)$ for all $1 \le q \le 6$):

 $\begin{bmatrix} L(\mathbf{u}_h^n), \Phi_h \end{bmatrix} \leq C(\|v_h^n\|_{H^1(\Omega)} + \|w_h^n\|_{L^2(\Omega)} + 1)(\|\varphi_h\|_{H^1(\Omega)} + \|\phi_h\|_{L^2(\Omega)}),$ for all \mathbf{u}_h^n and Φ_h in $W_h \times W_h$.

Proof of existence of solution for the virtual element scheme

Using Young inequality, we get

$$\llbracket L(\mathbf{u}_{h}^{n}), \mathbf{u}_{h}^{n} \rrbracket \geq C(\Vert v_{h}^{n} \Vert_{H^{1}(\Omega)}^{2} + \Vert w_{h}^{n} \Vert_{L^{2}(\Omega)}^{2}) + C'$$

for some constants C > 0 and C'. Finally, we conclude that $\llbracket L(\mathbf{u}_h^n), \mathbf{u}_h^n \rrbracket \ge 0$ for $\Vert \mathbf{u}_h^n \Vert^2 := \Vert v_h^n \Vert_{H^1(\Omega)}^2 + \Vert w_h^n \Vert_{L^2(\Omega)}^2$ sufficiently large. The existence of \mathbf{u}_h^n follows by the standard Brouwer fixed point argument.

A priori estimates

Proposition

Let $\mathbf{u}_h^n = (v_h^n, w_h^n)$ be a solution of the virtual element scheme (18). Then, there exist constants C > 0, depending on Ω , T, v_h^0 , w_h^0 , I_{app} and α_i , with $i = 1, \ldots 4$, such that

$$\begin{aligned} \|v_h\|_{L^{\infty}(0,T;L^{2}(\Omega))} + \|w_h\|_{L^{\infty}(0,T;L^{2}(\Omega))} &\leq C, \\ \|\nabla v_h\|_{L^{2}(\Omega_{T})} &\leq C, \qquad \|\Pi_k^0 v_h\|_{L^{4}(\Omega_{T})} &\leq C, \end{aligned}$$

Idea of the proof: Energy method. Cauchy-Schwarz, Young, and discrete Gronwall inequalities.

$$\begin{split} \frac{1}{2}\beta' \|v_{h}^{\kappa}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2}\beta'\|w_{h}^{\kappa}\|_{L^{2}(\Omega)}^{2} + d_{1}\alpha'\int_{0}^{\kappa\Delta t}|v_{h}|_{H^{1}(\Omega)}^{2} + \sum_{n=1}^{\kappa}\Delta t\left(\sum_{K\in\mathcal{T}_{h}}\int_{K}\frac{1}{\alpha_{1}}|\Pi_{K,k}^{0}v_{h}^{n}|^{4}\right) \\ &\leq \frac{1}{2}\beta''\|v_{h}^{0}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2}\beta''\|w_{h}^{0}\|_{L^{2}(\Omega)}^{2} + C_{1}\|v_{h}\|_{L^{2}(\Omega_{T})}^{2} + C_{2}\|w_{h}\|_{L^{2}(\Omega_{T})}^{2} + C, \end{split}$$

Interpolation in $W^{1,\infty}([0, T]; W_h)$

We introduce \bar{v}_h and \bar{w}_h the piecewise affine in t functions in $W^{1,\infty}([0, T]; W_h)$ interpolating the states $(v_h^n)_{n=0,...,N} \subset W_h$ and $(w_h^n)_{n=0,...,N} \subset W_h$ at the points $(n \Delta t)_{n=0,...,N}$. Then, we have

$$\begin{cases} m_h(\partial_t \bar{v}_h(t), \varphi_h) + \mathcal{D}(J(v_h(t))) a_h(v_h(t), \varphi_h) \\ + b_h(v_h(t), w_h(t), \varphi_h) = (I_{app,h}(t), \varphi_h)_{0,\Omega}, \\ m_h(\partial_t \bar{w}_h(t), \phi_h) = c_h(v_h(t), w_h(t), \phi_h), \end{cases}$$

for all φ_h and $\phi_h \in W_h$.

Space Time translate

Lemma

There exists a positive constant C>0 depending on $\Omega,\ T,\ v_0$ and $I_{\rm app}$ such that

$$\iint_{\Omega_{\boldsymbol{r}}\times(0,T)} m_h\Big(v_h(x+\boldsymbol{r},t)-v_h(x,t),v_h(x+\boldsymbol{r},t)-v_h(x,t)\Big) \leq C |\boldsymbol{r}|^2,$$

for all $\mathbf{r} \in \mathbb{R}^2$ with $\Omega_{\mathbf{r}} := \{x \in \Omega \, | \, x + \mathbf{r} \in \Omega\}$, and

$$\begin{split} \iint_{\Omega\times(0,T-\tau)} m_h\Big(v_h(x,t+\tau)-v_h(x,t),v_h(x,t+\tau)-v_h(x,t)\Big)\,dx\,dt\\ &\leq C(\tau+\Delta t), \qquad \text{for all }\tau\in(0,T). \end{split}$$

Kolmogorov's compactness criterion

Lemma

There exists a subsequence of $\mathbf{u}_h = (v_h, w_h)$, not relabeled, such that, as $h \to 0$,

$$v_h, \Pi_k^0 v_h \to v$$
 strongly in $L^2(\Omega_T)$ and a.e. in Ω_T ,
 $w_h, \Pi_k^0 w_h \to w$ weakly in $L^2(\Omega_T)$ and a.e. in Ω_T ,
 $v_h \to v$ weakly in $L^2(0, T; H^1(\Omega))$,
 $\Pi_k^0 v_h \to v$ weakly in $L^4(\Omega_T)$.

Convergence result

Theorem

Under the previous assumptions, if $v_0(x) \in L^2(\Omega)$, $w_0(x) \in L^2(\Omega)$, and $I_{app}(x, t) \in L^2(\Omega_T)$, then the virtual element solution $\mathbf{u}_h^n = (\mathbf{v}_h^n, \mathbf{w}_h^n)$, generated by discrete numercal scheme, converges along a subsequence to $\mathbf{u} = (v, w)$ as $h \to 0$, where \mathbf{u} is a weak solution of the system of equations de the FitzHugh-Nagumo model. Moreover, the weak solution is unique.

Projection $\mathcal{P}^h: H^1(\Omega) \to W_h$

We assume that I_{ion} is a linear function on v and w satisfying

$$\forall s_1, s_2, z_1, z_2 \in \mathcal{R} \quad |I_{\text{ion}}(s_1, z_1) - I_{\text{ion}}(s_2, z_2)| \le \alpha_7(|s_1 - s_2| + |z_1 - z_2|),$$

for some constant $\alpha_7 > 0$.

First, we introduce the projection $\mathcal{P}^h : H^1(\Omega) \to W_h$ as the solution of the following well-posed problem:

$$\begin{cases} \mathcal{P}^{h} u \in W_{h}, \\ a_{h}(\mathcal{P}^{h} u, \varphi_{h}) = a(u, \varphi_{h}) \text{ for all } \varphi_{h} \in W_{h}. \end{cases}$$

Error estimate of the Projection $\mathcal{P}^h : H^1(\Omega) \to W_h$ L.Beirão da Veiga, F.Brezzi, L.D.Marini and A.Russo, M3AS (2016)

Lemma

Let $u \in H^1(\Omega)$. Then, there exist $C, \tilde{C} > 0$, independent of h, such that

$$\mathcal{P}^{h}u-u\Big|_{H^{1}(\Omega)}\leq Ch^{k}|u|_{H^{k+1}(\Omega)},$$

Moreover, if the domain is convex, then

$$\left\|\mathcal{P}^{h}u-u\right\|_{L^{2}(\Omega)}\leq \tilde{C}h^{k+1}\left|u\right|_{H^{k+1}(\Omega)}.$$

Error estimate result

Theorem

Let (v, w) be the solution of system and let let $\mathbf{u}_h^n = (v_h^n, w_h^n)$ be the virtual element solution generated by the full discrete numerical scheme. Then, for n = 1, ..., N

Sample meshes

We choose

$$H(v, w) = av - bw,$$

$$I_{\text{ion}}(v, w) = -\lambda(w - v(1 - v)(v - \theta)),$$

For each polygon K with vertices P_1, \ldots, P_{N_K} , we have used

$$S^{K}(u,v) := \sum_{r=1}^{N_{K}} u(P_{r})v(P_{r}), \qquad u,v \in W_{1|K},$$
$$S^{K}_{0}(u,v) := h_{K}^{2} \sum_{r=1}^{N_{K}} u(P_{r})v(P_{r}), \qquad u,v \in W_{1|K}.$$

Sample meshes

We test the method by using different families of meshes.

Figure: Sample meshes: \mathcal{T}_h^1 (left), \mathcal{T}_h^2 (center), \mathcal{T}_h^3 (right).

Test 1

$$\Omega = (0, 1)^2$$
 and the time interval [0, 1],
 $a = 0.2232, b = 0.9, \lambda = -1, \theta = 0.004.$
 $I_{app} = 0$ and $D(x) = 0.01x.$
Initial data:

$$v_0(x, y) = (1 + 0.5\cos(4\pi x)\cos(4\pi y)),$$

$$w_0(x, y) = (1 + 0.5\cos(8\pi x)\cos(8\pi y)).$$

We compute errors using a numerical solution on an extremely fine mesh (h = 1/512) and time step ($\Delta t = 1/512$) as reference.

References

Tables of error for v and w

$h \Delta t$	$\Delta t = 1/3$	$\Delta t = 1/12$	$\Delta t = 1/48$	$\Delta t = 1/192$
1/8	0.523499772859947	0.254128190031018	0.231625702484074	0.228564582239788
1/16	0.501427757954840	0.073397686413675	0.033438153244729	0.031719551242699
1/32	0.499619638795241	0.063643322905268	0.010299560779982	0.005840961963621
1/64	0.499780908876156	0.064056553619930	0.009767337053892	0.002546001572083

Table: Test 1: $E_{h,\Delta t}$ error for v and for the meshes \mathcal{T}_h^2 .

$h \setminus \Delta t$	$\Delta t = 1/3$	$\Delta t = 1/12$	$\Delta t = 1/48$	$\Delta t = 1/192$
1/8	0.233922447286499	0.102194576523503	0.086875203270260	0.084789535586885
1/16	0.226571951589132	0.089790111454289	0.075921461474953	0.074408607847462
1/32	0.210582296617939	0.049672099006078	0.023584319200822	0.020543068189885
1/64	0.207657184653963	0.043302505350623	0.011225579353452	0.005588513008340

Table: Test 1: $E_{h,\Delta t}$ error for w and for the meshes \mathcal{T}_h^2 .

Tables of error for v and w

Figure: Test 1: Variables v (left) and w (right) for h = 1/64 and $\Delta t = 1/80$.

Test 2: Periodic spiral wave

F. Liu, P. Zhuang, I. Turner, V. Anh and K. Burrage, J. Comput. Phys. (2015)

We use meshes \mathcal{T}_{h}^{3} (with h = 1/128). $\Omega := (0, 1)^{2}$, and time interval [0, 15] (with $\Delta t = 1/200$). $a = 0.16875, b = 1, \lambda = -100, \theta = 0.25$. Initial data:

$$v_0(x, y) = \begin{cases} 1.4 & if \\ x < 0.5 & and \\ y < 0.5 \\ 0 & otherwise, \end{cases}$$
$$w_0(x, y) = \begin{cases} 0.15 & if \\ x > 0.5 & and \\ y < 0.5 \\ 0 & otherwise. \end{cases}$$

References

Test 2: Periodic spiral wave

Figure: Test 2: Numerical solution of the transmembrane potential v for different times.

Bibliography

- V. ANAYA, M. BENDAHMANE, M. LANGLAIS AND M. SEPÚLVEDA, A convergent finite volume method for a model of indirectly transmitted diseases with nonlocal cross-diffusion, Comput. Math. Appl., 70(2), (2015), pp. 132–157.
- [2] V. ANAYA, M. BENDAHMANE, D. MORA AND M. SEPÚLVEDA, A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology, IMA J. Numer. Anal., to appear (2019).
- [3] V. ANAYA, M. BENDAHMANE AND M. SEPÚLVEDA, Numerical analysis for a three interacting species model with nonlocal and cross diffusion, ESAIM Math. Model. Numer. Anal., 49(1), (2015), pp. 171–192.
- [4] L. BEIRÃO DA VEIGA, C. LOVADINA AND D. MORA, A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg., 295, (2015), pp. 327–346.
- [5] L. BEIRÃO DA VEIGA, D. MORA AND G. RIVERA, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates, Math. Comp., 85(315), (2019), pp. 149–178.
- [6] L. BEIRÃO DA VEIGA, D. MORA, G. RIVERA AND R. RODRÍGUEZ, A virtual element method for the acoustic vibration problem, Numer. Math., 136(3), (2017), pp. 725–763.