Maximal L^p-regularity

Perturbation approach

Said Hadd

Department of Mathematics, Faculty of Sciences, Agadir

Workshop international

Modélisation et calcul pour la Biomathématique

Essaouira July 09, 2019

Outline

Maximal L^p-regularity

- The concept of Maximal L^p -regularity
- Lutz Weis's results on Maximal Regularity in UMD spaces
- New results on maximal L^p -regularity: perturbation approach
- Application to Volerra integro-differential equations

Definition of Maximal Regularity for autonomous equations

Definition

Let X Banach, $1 . We say that <math>A : D(A) \subset X \to X$ has the maximal L^p -regularity on $[0,\tau]$ $(A \in MR_p(0,\tau;X))$ if

$$\forall \mathbf{f} \in L^p(0,\tau;X), \quad \exists ! \mathbf{u}(\cdot) \in W^{1,p}(0,\tau;X) \cap L^p(0,\tau;D(A))$$

satisfying The evolution equation

$$\dot{u}(t) = Au(t) + f(t), \quad t \in [0, \tau], \quad u(0) = 0$$

• If $A \in MR_p(0,\tau;X)$ then there exists c > 0 such that

$$\int_0^\tau \|\dot{u}(t)\|^p dt + \int_0^\tau \|Au(t)\|^p dt \le C \int_0^\tau \|f(t)\|^p dt.$$

• "Maximal" means that the better regularity of \dot{u} and Au is $L^p (\dot{u} - Au = f).$

First conditions for maximal L^p -regularity

Maximal L^p-regularity

0000000

Necessary condition (Dore Veni)

If $A \in MR_p(0,\tau;X)$ and X Banach, then $A:D(A) \subset X \to X$ is the generator of holomorphic semigroup on X. In particular

$$\sup_{\lambda \in \Sigma_{\sigma}} \|\lambda R(\lambda, A)\| < \infty$$

for some $\sigma > \frac{\pi}{2}$, where $R(\lambda, A) := (\lambda I - A)^{-1}$ and the sector

$$\Sigma_{\sigma} := \{ \lambda \in \mathbb{C} : \lambda \neq 0, |\arg(\lambda)| < \sigma \}$$

NSC on Hilbert spaces (Dore Veni)

If X is a **Hilbert** space, then $A \in MR_n(0,\tau;X)$ iff A is the generator of holomorphic semigroup on X.

The role of maximal L^p -regularity

Maximal L^p -regularity helps in proving well-posedess of e.g.

- Non-autonomous evolution equations
- Non-linear equations
- quasi-linear evolution equations

Consider the non-autonomous Cauchy problem

$$\dot{u}(t) = A(t)u(t) + f(t), \qquad u(0) = \mathbf{x}$$
 (nCP)

Where $A(t): D \subset X \to X, t \in [0, \tau]$ is a family of analytic generators such that

$$||R(\lambda, A(t))|| \le c (1 + |\lambda|)^{-1}, \qquad \lambda \in \mathbb{C}^+.$$

We assume that $A(\cdot):[0,\tau]\to\mathcal{L}(D,X)$ is continuous

For example

Maximal L^p-regularity

$$A(t) = \sum_{i,j=1}^{n} a_{ij}(t,\cdot) \frac{\partial^2}{\partial x_i \partial x_j}$$

Illustration to an example: Non-autonomous evolution equations

For f = 0, we need also

$$(s \mapsto u(s) = e^{sA(t)}x) \in W^{1,p}([0,\tau], X) \cap L^p([0,\tau], D).$$

This is the case if $x \in Y$, an interpolation space between D and X.

For $x \in Y$ we reformulate (nCP) as

$$\dot{u}(t) = A(0)u(t) + g_u(t), \qquad u(0) = x,$$

where

$$g_u(t) = [A(t) - A(0)]u(t) + f(t).$$

Illustration to an example:Non-autonomous evolution equations

Denote by

$$[L(u)](t) := e^{A(0)t}x + \int_0^t e^{(t-s)A(0)}g_u(s)ds$$

The solution of the autonomous equation

$$\dot{u}(t) = A(0)u(t) + g_u(t), \qquad u(0) = x,$$

Then, at least formally, the solutions of (nCP) are the fixed point of the map L.

Maximal regularity will now used to show that L is a contraction in $L^p([0,a],D)$ for a small $a\leq \tau.$

Illustration to an example: Non-autonomous evolution equations

If u_1, u_2 in $L^p([0, a], D)$, then $L(u_1) - L(u_2)$ equals the solution of

$$\dot{u}(t) = A(0)u(t) + (g_{u_1}(t) - g_{u_2}(t)), \qquad u(0) = 0,$$

Maximal regularity now implies that

$$||L(u_1) - L(u_2)||_{L^p([0,a],D)} \le ||A(0)u||_{L^p([0,a],X)}$$

$$\le C||g_{u_1} - g_{u_2}||$$

$$= ||[A(\cdot) - A(0)](u_1 - u_2)||_{L^p([0,a],X)}$$

$$\le \gamma_a ||u_1 - u_2||_{L^p([0,a],D)}$$

where

$$\gamma_a := C \sup_{s \in [0,a]} ||A(t) - A(0)||_{\mathcal{L}(D,X)}.$$

Unconditional Martingale Differences spaces: UMD

A Banach space X is called UMD-space if the Hilbert transform

$$(\mathcal{H}f)(t) = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{|s| > \epsilon} \frac{f(t-s)}{s} ds, \quad t \in \mathbb{R}, \quad f \in \mathcal{S}(\mathbb{R}, X),$$

is extend to a bounded operator on $L^p(\mathbb{R}, X)$.

- UMD spaces are reflexive
- Any Hilbert space is UMD
- the L^p -spaces $p \in (1, \infty)$ are UMD

Maximal L^p -regularity in UMD spaces

 $\tau \subset \mathcal{L}(X,Y)$ is \mathcal{R} -bounded if $\exists C>0$ s.t. for all $n \in \mathbb{N}$, $T_1,...,T_n \in \tau, x_1,...,x_n \in X, r_i:[0,1] \to \{-1,1\}$ independent random variables.

$$\int_0^1 \|\sum_{j=1}^n r_j(s) T_j x_j \|_Y ds \le C \int_0^1 \|\sum_{j=1}^n r_j(s) x_j \|_X ds$$

Weis's Theorem in UMD spaces

Let A generates of a bd analytic semigroup in a UMD-space X. Then

$$A \in MR_p(0,\tau;X) \iff \{\lambda R(\lambda,A) : \lambda \in \rho(A)\} \text{ is } \mathcal{R} - \text{bounded}.$$

We assume that A generates an analytic semigroup $T(t)_{t>0}$ on a **Banach** space X.

We select

Maximal L^p-regularity

$$(R_A f)(t) := A \int_0^t T(t-s)f(s)ds, \qquad f \in C(0,\tau;D(A))$$

Weis's theorem says that $A \in MR_p(0,T;X)$ iff there exists C>0 such that

$$||R_A f||_p \le C||f||_p, \quad \forall f \in f \in C(0, \tau; D(A)).$$

• A closed operator $A:D(A)\subset X\to X$ is **sectorial** if $(0,\infty)\subset \rho(A)$ and

$$\sup_{t>0} ||t(t+A)^{-1}|| < \infty.$$

• A linear operator $P:D(P)\subset X\to X$ is small for A if $D(A)\subset D(P)$ and for every $\delta>0$, there exists $c_\delta>0$ such that

$$||Px|| \le \delta ||Ax|| + c_\delta ||x||, \quad \forall x \in D(A).$$

Theorem (Kunstmann & Weis 2001)

Let A be sectorial in a **UMD**-space X, $A \in MR_p(0, \tau; X)$ and P be a small perturbation for A. Then $A + P \in MR_p(0, \tau; X)$.

More perturbations: admissible perturbations

 $P \in \mathcal{L}(D(A), X)$ is said to be *p*-admissible perturbation for A if for some (hence all) $\alpha > 0$ there exists $\gamma := \gamma(\alpha) > 0$ such that

$$\int_0^\alpha \|PT(t)x\|^p dt \le \gamma^p \|x\|^p, \qquad \forall x \in D(A).$$

Examples: Let A generates a bd analytic semigroup.

• If $\theta \in (0, \frac{1}{n})$ then $P := (-A)^{\theta}$ is p-admissible for A.

The proof uses the estimate

$$||t^{\theta}A^{\theta}T(t)|| \le M, \quad \forall t \ge 0.$$

• If $\theta \in (\frac{1}{n}, 1)$ then $P := (-A)^{\theta}$ is never p-admissible for A.

X Banach, and $P \in \mathcal{L}(D(A), X)$ p-admissible

Theorem

Maximal L^p-regularity

Assume A generates an analytic semigroup $(T(t))_{t\geq 0}$. Then $(A^{\mathbf{P}} := A + \mathbf{P}, D(A))$ generates an analytic semigroup T^p on X

P p-admissible implies there exists $\alpha_0 > \omega_0(A)$ such that $\mathbb{C}_{\alpha_0} \subset \rho(A^P)$ and

$$||R(\lambda, A^P)|| \le 2||R(\lambda, A)||, \quad \forall \lambda \in \mathbb{C}_{\alpha_0}.$$

As T analytic, then T^P is analytic.

Amansag, Bounit, Driouich, S.H. J. Evolution Equations 2019

$$X$$
 Banach, and $P \in \mathcal{L}(D(A),X)$ p -admissible, $f \in L^p_{loc}(\mathbb{R}^+,X)$,

$$\dot{u}(t) = (A + P)u(t) + f(t), \quad u(0) = 0.$$
 (CP)

Theorem (H., Semigroup Forum 2005)

There exists an extension $\tilde{P}:D(\tilde{P})\subset X\to X$ of P such that the solution of (CP) satisfies

$$\begin{split} &u(t)\in D(\tilde{P})\quad\text{for }a.e.\ t>0,\\ &\|\tilde{P}u(\cdot)\|_{L^p([0,\alpha],X)}\leq c_\alpha\|f\|_{L^p([0,\alpha],X)},\\ &u(t)=\int_0^t T(t-s)[\tilde{P}u(s)+f(s)]ds \end{split}$$

Maximal L^p -regularity under admissible perturbations

X Banach, and $P \in \mathcal{L}(D(A), X)$ p-admissible

Theorem (Amansag, Bounit, Driouich, H., 2019)

$$A \in MR_p(0,\tau;X) \iff A^P = A + P \in MR_p(0,\tau;X)$$

For any $f \in C([0,\tau],D(A))$ we define

$$(\mathcal{R}f)(t) = A \int_0^t T(t-s)f(s)ds, \quad (\mathcal{R}^P f)(t) = A^P \int_0^t T^P(t-s)f(s)ds.$$

We have

$$\mathcal{R}^P f = \mathcal{R}g, \quad g = \tilde{P}u(\cdot) + f, \qquad \|g\|_p \le \kappa \|f\|_p$$

If $A \in MR_n(0,\tau;X)$, then

$$\|\mathcal{R}g\|_p \le C\|g\|_p \le C\kappa \|f\|_p.$$

An example: a heat equation in a no reflexive state space

Take $\alpha \in [0, \frac{1}{p})$ and Consider the heat equation

$$\dot{z}(t) = \Delta z(t) + (-\Delta)^{\alpha} z(t) + f(t), \qquad z(0) = 0$$

on the **Besov space** $X:=\dot{B}^0_{1,p}(\mathbb{R}^n)$ which is <u>no reflexive</u>.

Ogawa & Shimizu (2010) proved that $\Delta \in MR_p(\dot{B}^0_{1,p}(\mathbb{R}^n))$.

We know that $(-\Delta)^{\alpha}$ is *p*-admissible.

Thus
$$\Delta + (-\Delta)^{\alpha} \in MR_p(\dot{B}^0_{1,p}(\mathbb{R}^n)).$$

Application to Volterra operator

Let X be a Banach space and introduce the space

$$\mathcal{X} = X \times L^q(\mathbb{R}^+, X), \qquad \|\binom{x}{g}\| = \|x\| + \|g\|_q,$$

and the matrix operator

$$\mathfrak{A} = \begin{pmatrix} A & \delta_0 \\ a(\cdot)F & \frac{d}{ds} \end{pmatrix}, \quad D(\mathfrak{A}) = D(A) \times W^{1,q}(\mathbb{R}^+, X).$$

Where

- $A: D(A) \subset X \to X$ generates a C_0 -sg $(T(t))_{t\geq 0}$ on X,
- $a: \mathbb{R}^+ \to \mathbb{C}$ and $F: D(A) \to X$ a linear operator

Problem

Assume that $A \in MR_n(0, \tau; X)$. Does \mathfrak{A} generates an analytic semigroup and $\mathfrak{A} \in MR_p(0,\tau;\mathcal{X})$ for some $p \in (1,\infty)$?

Application to Volterra operator

We split

Maximal L^p-regularity

$$\mathfrak{A} = \begin{pmatrix} A & 0 \\ 0 & \frac{d}{ds} \end{pmatrix} + \begin{pmatrix} 0 & \delta_0 \\ a(\cdot)F & 0 \end{pmatrix}$$
$$:= \mathfrak{A}_0 + \mathcal{P}.$$

Clearly \mathfrak{A}_0 generates the following semigroup on \mathcal{X} ,

$$\mathcal{T}_0(t) = \begin{pmatrix} T(t) & 0 \\ 0 & S(t) \end{pmatrix}, \qquad t \ge 0,$$

where $(S(t))_{t\geq 0}$ is the right shift semigroup $L^q(\mathbb{R}^+,X)$:

$$(S(t)g)(s) = g(t+s), t, s \ge 0.$$

Observe that $(\mathcal{T}_0(t))_{t\geq 0}$ is not analytic in $\mathcal{X}=X\times L^q(\mathbb{R}^+,X)$.

The use of Bergman space

Take $\theta \in (0, \frac{\pi}{2})$ and define

$$\Sigma_{\theta} := \{ z \in \mathbb{C} : |\arg(z)| < \theta \}$$

The Bergman space

$$\begin{split} B^q_{\theta,X} &:= \left\{ f: \Sigma_\theta \to X: \text{ holomorphic } \int_{\Sigma_\theta} \|f(\sigma+ir)\|_X^q d\sigma dr < \infty \right\}. \\ \|f\|_{B^q_{\theta,X}} &:= \left(\int_{\Sigma_\theta} \|f(\sigma+ir)\|_X^q d\sigma dr \right)^{\frac{1}{q}}. \end{split}$$

Maximal L^p-regularity

On B_{h}^{q} , we define the complex derivative $\frac{d}{dz}$ with domain

$$D\left(\frac{d}{dz}\right) := \left\{ f \in B_{h,X}^q; f' \in B_{h,X}^q \right\}.$$

 $(\frac{d}{dz}, D(\frac{d}{dz}))$ generates an analytic semigroup on $B_{\theta,X}^q$.

If X is UMD then $\frac{d}{dz} \in MR_n(0,\tau; B_{\theta,X}^q)$.

If X is UMD and $A \in MR_n(0, \tau; X)$ then

$$\mathfrak{A}_0 = \begin{pmatrix} A & 0 \\ 0 & \frac{d}{dz} \end{pmatrix} \in MR_p(0, \tau; \mathcal{X}^q), \quad \mathcal{X}^q := X \times B_{\theta, X}^q.$$

Theorem (Amansag, Bounit, Driouich, H., 2019)

Let X UMD space, $s \in (1,2)$, $q = \frac{ps}{s-1}$, $A \in MR_p(0,\tau;X)$, $a \in B^q_{\theta,\mathbb{C}}$ and $F \in \mathcal{L}(D(A),X)$ p-admissible for A. Then

$$\mathfrak{A} = \begin{pmatrix} A & \delta_0 \\ a(\cdot)F & \frac{d}{ds} \end{pmatrix} = \mathfrak{A}_0 + \mathcal{P} \in MR_p(0, \tau; X \times B_{\theta, X}^q).$$

We prove that

Maximal L^p-regularity

$$\int_0^\alpha \|f(t)\|_X^p dt \le c_\alpha \|f\|_{B_{\theta,X}^q}^p.$$

This implies that

$$\int_0^\alpha \|\mathcal{P}\mathcal{T}_0(t)(\frac{x}{f})\|_{\mathcal{X}^q}^p \leq \gamma \left(\|x\| + \|f\|_{B_{\theta,X}^q}^p\right)^p.$$

where $\gamma = h(\|a\|_{B^q_{A_{\mathbb{C}}}}, c_{\alpha}).$

Unbounded perturbations of generator domain

Let X, U and Z such that $Z \hookrightarrow X$, $A_m : D(A_m) = Z \to X$ differential operator, $G, M: Z \to U$. Consider the boundary value problem

$$(BVP) \quad \begin{cases} \dot{w}(t) = A_m w(t) + f(t), & t \ge 0, \\ Gw(t) = Mw(t), & t \ge 0. \end{cases} \quad w(0) = 0,$$

We assume

Maximal L^p-regularity

- $G: Z \to U$ is surjective
- $A := A_m$ with $D(A) = \{x \in Z : Gx = 0\}$ is a generator of C_0 -semigroup on X

The Dirichlet operator

$$D_{\lambda} := \left(G_{|\ker(\lambda - A_m)} \right)^{-1}, \quad \lambda \in \rho(A).$$

Unbounded perturbations of generator domain

If we define

$$\mathcal{A} := A_m, \quad D(\mathcal{A}) := \{ x \in Z : Gx = \mathbf{M}x \}$$

then (BVP) is equivalent to

$$\dot{(}w)(t) = Aw(t) + f(t), \quad w(0) = 0, \qquad t \in [0, \tau].$$
 (CP)

In H., Manzo, Rhandi, Disct. conti. Dyn. System A (2015), we proved there exists an extension (M, D(M)) of M such that

$$\mathcal{A} := A + (\lambda - A)D_{\lambda}\tilde{M}.$$

Maximal L^p -regularity for \mathcal{A} is obtained in Amansag, Bounit, Driouich and H., SIAM J. Math. Anal. to appear

Thank You